Integrated Management of Striga hermonthica in Maize in the Nigerian Savannas

A.Y. Kamara
International Institute of Tropical Agriculture (IITA), Kano, Nigeria
West Africa agroecological zones
Introduction
Introduction

- Maize is the most important staple food crop for over 300 million people in SSA.

- Africa produces approximately 52 million tons annually from about 29 million ha.

- Over 95% of maize produced in SSA is grown by small to medium scale farmers for subsistence needs.

- Nigeria is one of the highest maize producers in SSA (7.5 million tons of grain from 5 million hectares annually).
Introduction

- One of the main constraints to the production of maize in Nigeria are parasitic weeds (*Striga hermonthica*).
- Maize yield losses due to *Striga* can be as high as 80%.
- In Nigeria, these losses cause widespread food insecurity and malnutrition and threaten the livelihood of rural farmers.
Striga on maize
Percentage of fields infested by *Striga* species in northeast Nigeria

<table>
<thead>
<tr>
<th>Ecological zone</th>
<th>Sorghum</th>
<th>Maize ¹</th>
<th>Rice ²</th>
<th>Millet ³</th>
<th>Cowpea ⁴</th>
<th>Fallow ³</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudan savanna</td>
<td>100</td>
<td>96</td>
<td>-</td>
<td>100</td>
<td>71</td>
<td>45</td>
<td>82.4</td>
</tr>
<tr>
<td>Northern Guinea</td>
<td>96</td>
<td>87</td>
<td>61</td>
<td>-</td>
<td>95</td>
<td>48</td>
<td>77.4</td>
</tr>
<tr>
<td>Southern Guinea</td>
<td>93</td>
<td>56</td>
<td>58</td>
<td>-</td>
<td>78</td>
<td>37</td>
<td>64.4</td>
</tr>
<tr>
<td>Mean</td>
<td>96.3</td>
<td>79.6</td>
<td>59.5</td>
<td>100</td>
<td>81.3</td>
<td>43.3</td>
<td>74.7</td>
</tr>
</tbody>
</table>

Associated Striga species:
Striga on various Crops

- Striga effect on sorghum
- Striga effect on rice
- Striga effect on maize
- Striga effect on cowpea
Range of Striga-management options developed and tested

- Resistant varieties
- Complimentary crop management practices (trap crops in rotation, push-pull, fertilizer application)
- IR-Maize
Putting research into use

- Development of strong partnerships
- The use of participatory approaches
- Strengthening of community based organisations
- Production for the market
- Gender mainstreaming
- Use of research knowledge and proven technologies for innovation
Form coalition of partners and hold workshops to set-up IPs

- Research: IITA, IAR, UniMaid, BUK
- Extension: BOSADP, Agric Dept. Biu, Damboa, Hawul, Kwaya
- NGOs: WOFAN, CDEV.
- Input dealers: Jubaili, Africa Agro, KASAIDA, community input dealers
- Banks: Nigeria Agricultural Bank
- Policy makers: Ministry Agric, LG Chairmen and councillors from the four LGAs
- Agro-processors: Grand Cereals Comp., Jos, Modern Universal Foods, Kano
- Seed companies: Premier Seed, Seed Project Co., Jirkur Seed Cooparative
- Farmers organisations
Use of PREA approach to provide targeted interventions along the value chain

- Community and livelihood analysis to identify problems, opportunities and discuss solutions among stakeholders
- Social mobilization
- Action planning
- Testing promising technologies (on-station and on-farm)
- Sharing experience (mid-season evaluation)
- Self-evaluation
Learning Together Through Participatory Extension Approaches

PEA Learning Cycle

- Social mobilisation
 - Entering community
 - Building trust
 - Feedback to community
 - Identifying local organisations
 - Raising awareness
- Experimentation while implementing action
 - Identifying needs & problems
 - Prioritising needs & problems
- Action planning
 - Searching for solutions
 - Mandating local institutions
- Self-evaluation
 - Planning for next learning cycle
- Sharing experience
 - Mid-season evaluation
 - Process monitoring & review
- Social!
Community and livelihood analysis to define entry points

- Community analysis carried out in the targeted communities to identify constraints and define entry points
Community and livelihood analysis to define entry points

Constraints
• Poor soil fertility
• Parasitic weed infestation
• Drought
• Crop pests and diseases
• Poor crop management
• Dysfunctional markets
• Poor access to information
• Post-harvest losses
• Ineffective policies
Community and livelihood analysis to define entry points

Possible agreed solutions

- Foster interaction among stakeholders to find and share information on constraints and solutions
- Crop diversification to improve soil fertility and control Striga
- Cereal-legume rotation to improve soil fertility and control Striga
- Deployment of Striga-resistant crop varieties
- Use of organic/inorganic mineral nutrient sources
- Try biological control options using fungi
- Link farmers to market
Social Mobilization to engage identified community groups

- CBOs engaged in each community to experiment new innovations to control Striga
- CBOs nominated 1 or 2 lead farmers to demonstrate a selected technology
- CBOs selected key farmers to produce seeds in community-based seed schemes
PROSAB’s development approach

- **On-station trials** – breeding, plant screening, etc

- **Mother trials (PROSAB)**
 - On-farm research – variety trials, management practices

- **Farmer Groups**
 - Lead farmer trials, local seed production,
 - Farmer testing and learning, adoption/adaptation
 - Input and output marketing

- **Scaling out**
 - Farmer-to-farmer extension
 - Further farmer testing, adoption, adaptation

Knowledge

- **Partnerships**
- **PREA**
- **Strong CBOs**
- **Gender**

No of households involved

- **Pre 2004**
- **2004-5**
- **2006-7**
- **2007-8**

Time

www.iita.org
Effect of maize varieties and N fertilization on grain yield, *Striga* emergence and damage score
Effect of N fertilization on *Striga* Infestation of maize genotypes

<table>
<thead>
<tr>
<th>Location</th>
<th>Early-maturing</th>
<th>Late-maturing</th>
<th>N rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No of Striga/plot</td>
<td>Grain yield (kg/ha)</td>
<td>No of Striga/plot</td>
</tr>
<tr>
<td>Sabongari</td>
<td>74.9</td>
<td>2021.9</td>
<td>79.6</td>
</tr>
<tr>
<td>Wandali</td>
<td>64.3</td>
<td>3128.1</td>
<td>137.5</td>
</tr>
<tr>
<td>N rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>87.5</td>
<td>1277.3</td>
<td>122.7</td>
</tr>
<tr>
<td>30</td>
<td>76.6</td>
<td>2169.4</td>
<td>132.6</td>
</tr>
<tr>
<td>60</td>
<td>75.2</td>
<td>3128.3</td>
<td>106.4</td>
</tr>
<tr>
<td>120</td>
<td>39.1</td>
<td>3725.1</td>
<td>72.5</td>
</tr>
<tr>
<td>SED (Location)</td>
<td>8.9</td>
<td>102.7</td>
<td>12.2</td>
</tr>
<tr>
<td>SED (Nitrogen)</td>
<td>15.3</td>
<td>205.6</td>
<td>21.9</td>
</tr>
</tbody>
</table>
Nitrogen and cultivar effect on grain yield of maize under natural infestation with *Striga*.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Nitrogen levels (kg ha(^{-1}))</th>
<th>Grain yield kg ha(^{-1})</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>8331-1-1</td>
<td>0 30 60 120</td>
<td>538.9 1297.4 1596.2 3171.1</td>
<td>1650.9</td>
</tr>
<tr>
<td>9022-13STR</td>
<td>0 30 60 120</td>
<td>1396.0 2594.2 2653.2 4667.3</td>
<td>2827.7</td>
</tr>
<tr>
<td>ACR 97 TZL COMP1-W</td>
<td>0 30 60 120</td>
<td>1465.2 2005.4 3650.4 4253.6</td>
<td>2843.6</td>
</tr>
<tr>
<td>IWDC2 SYN F2</td>
<td>0 30 60 120</td>
<td>1139.0 2050.7 2458.9 4567.7</td>
<td>2554.1</td>
</tr>
<tr>
<td>TZB-SR</td>
<td>0 30 60 120</td>
<td>828.8 2114.0 1853.1 3105.6</td>
<td>1975.4</td>
</tr>
<tr>
<td>TZL COMP1 SYN-W</td>
<td>0 30 60 120</td>
<td>1452.7 2313.1 2514.8 3981.7</td>
<td>2565.6</td>
</tr>
<tr>
<td>TZL COMP1 SYN-Y</td>
<td>0 30 60 120</td>
<td>1984.5 1597.0 3349.3 3702.0</td>
<td>2658.2</td>
</tr>
<tr>
<td>TZL COMP1-W C6 F2</td>
<td>0 30 60 120</td>
<td>2417.1 2816.7 38.26.1 4336.4</td>
<td>3349.1</td>
</tr>
<tr>
<td>Zea-dplo</td>
<td>0 30 60 120</td>
<td>1754.1 2004.9 2847.0 4826.3</td>
<td>2858.1</td>
</tr>
<tr>
<td>Mean</td>
<td>0 30 60 120</td>
<td>1441.8 2088.2 2749.9 4068.0</td>
<td></td>
</tr>
</tbody>
</table>

S E D L x N 187.32**

S E D L x V 280.98**

S E D L x N x V 561.96
Cereal-legume rotation
On-farm performance of maize in rotation systems (NGS and SGS)

<table>
<thead>
<tr>
<th>Ecological zone</th>
<th>Crop history</th>
<th>Yield (kg/ha)</th>
<th>Striga/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGS</td>
<td>FC</td>
<td>2490</td>
<td>208493</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>2794</td>
<td>239684</td>
</tr>
<tr>
<td></td>
<td>TZx1448</td>
<td>3309</td>
<td>149954</td>
</tr>
<tr>
<td></td>
<td>S.E.</td>
<td>239</td>
<td>45554</td>
</tr>
<tr>
<td>SGS</td>
<td>FC</td>
<td>1911</td>
<td>164012</td>
</tr>
<tr>
<td></td>
<td>TZx1448</td>
<td>2986</td>
<td>102221</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>2789</td>
<td>211902</td>
</tr>
<tr>
<td></td>
<td>TZx1448</td>
<td>3213</td>
<td>72824</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>2292</td>
<td>155720</td>
</tr>
<tr>
<td>S.E.</td>
<td></td>
<td>122.</td>
<td>42319</td>
</tr>
</tbody>
</table>
Mean grain yield of maize varieties following cowpea on farmers’ field (Sudan Savanna)

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Striga ha(^{-1})</th>
<th>Grain yield ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowpea</td>
<td>2000SYN-STR</td>
<td>0</td>
<td>3177</td>
</tr>
<tr>
<td>Cowpea</td>
<td>2004SYN-STRTZE</td>
<td>17515</td>
<td>3510</td>
</tr>
<tr>
<td>Cowpea</td>
<td>99TZEE-Y-STR</td>
<td>5515</td>
<td>2864</td>
</tr>
<tr>
<td>Cowpea</td>
<td>99EVDTSTR-TZE</td>
<td>1667</td>
<td>3046</td>
</tr>
<tr>
<td>FC</td>
<td>FC</td>
<td>32192</td>
<td>1871</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>11378</td>
<td>2966</td>
</tr>
</tbody>
</table>
Mean grain yield of maize varieties following groundnut on farmers’ field

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Striga ha(^{-1})</th>
<th>Grain yield ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundnut</td>
<td>2000SYNEE</td>
<td>6566</td>
<td>3014</td>
</tr>
<tr>
<td>Groundnut</td>
<td>2004SYNST-TZE</td>
<td>4007</td>
<td>2593</td>
</tr>
<tr>
<td>Groundnut</td>
<td>99TZEE-Y-STR</td>
<td>5566</td>
<td>3149</td>
</tr>
<tr>
<td>Groundnut</td>
<td>99EVDSTSTR-TZE</td>
<td>6833</td>
<td>3493</td>
</tr>
<tr>
<td>FC</td>
<td>FC</td>
<td>32182</td>
<td>1534</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>11031</td>
<td>2757</td>
</tr>
</tbody>
</table>
Mean grain yield of maize varieties following soybean on farmers’ field

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Striga ha^{-1}</th>
<th>Grain yield ha^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean</td>
<td>2000SYN</td>
<td>3112</td>
<td>3375</td>
</tr>
<tr>
<td>Soybean</td>
<td>2004SYNSTR-TZE</td>
<td>8415</td>
<td>2891</td>
</tr>
<tr>
<td>Soybean</td>
<td>99TZEE-Y-STR</td>
<td>1313</td>
<td>1875</td>
</tr>
<tr>
<td>Soybean</td>
<td>99EVDTSTR-TZE</td>
<td>3022</td>
<td>4022</td>
</tr>
<tr>
<td>FC</td>
<td>FC</td>
<td>20357</td>
<td>1724</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>7244</td>
<td>2777</td>
</tr>
</tbody>
</table>
Build and strengthen capacity of Stakeholders
Organized mid-season evaluation and mega field days

- Organized mid-season evaluations across communities to establish advantages and disadvantages of technologies
- Organized mega field days to scale-out and up project activities
- .
Adoption – Formal Survey

Maize: 89% SS, 73% NGS, 55% SGS
Soybean: 68% SS, 77% NGS, 55% SGS
Cowpeas: 16% SS, 42% NGS, 42% SGS
Groundnuts: 39% SS, 39% NGS, 39% SGS
Rotation: 38% SS, 44% NGS, 38% SGS
Covering fertiliser: 89% SS, 39% NGS, 39% SGS
Close spacing: 74% SS, 60% NGS, 55% SGS
Spraying: 83% SS, 83% NGS, 33% SGS
Adoption (PASS – 2008) – Transect work and focus group discussion

2009

- 84% for maize
- 63% for soybeans
- 61% for rice
- 28% for cowpea
- 25% for groundnuts
- 8% for sorghum
- 93% for legume-based rotation
- 83% for use of herbicides/pesticides
- 68% for strip control through weeding
- 53% for closer spacing
- 50% for buying fertilizer
- 47% for soybean utilization

76% for soybean
Thank you